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We study the effects of demographic stochasticity on the long-term dynamics of biological coevolution
models of community assembly. The noise is induced in order to check the validity of deterministic population
dynamics. While mutualistic communities show little dependence on the stochastic population fluctuations,
predator-prey models show strong dependence on the stochasticity, indicating the relevance of the finiteness of
the populations. For a predator-prey model, the noise causes drastic decreases in diversity and total population
size. The communities that emerge under influence of the noise consist of species strongly coupled with each
other and have stronger linear stability around the fixed-point populations than the corresponding noiseless
model. The dynamics on evolutionary time scales for the predator-prey model are also altered by the noise.
Approximate 1 / f fluctuations are observed with noise, while 1 / f2 fluctuations are found for the model without
demographic noise.
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I. INTRODUCTION

Noise may be a relevant perturbation to many kinds of
population dynamics. Effects of population fluctuations have
been investigated for several models, for example, predator-
prey models �1,2�, epidemic models �3�, the Ricker model
�4�, evolutionary game theories �5–10�, and pattern forma-
tion �11–13�. Since the birth-death process of individuals is
stochastic, the population of each species always fluctuates
due to the finiteness of the number of individuals, known as
demographic stochasticity. Demographic stochasticity is an
endogenous phenomenon, and the species populations may
fluctuate even in a constant environment. Population dynam-
ics with demographic stochasticity are more realistic than the
corresponding deterministic description which is valid for
infinite populations in constant environments, and they often
show nontrivial dynamics which cannot be predicted by the
deterministic equations. For a particular predator-prey sys-
tem �1�, the demographic stochasticity causes oscillations,
while the system is asymptotically stable under the corre-
sponding deterministic population dynamics. Since the de-
mographic stochasticity effectively adds uncorrelated noise
to the population dynamics, the oscillations at the eigenfre-
quencies are amplified by a large factor. Hence, the effect of
the demographic stochasticity is much larger than the one
estimated by naive O�1 /�N� estimates. For a neutrally stable
system �6�, the noise effect becomes even more drastic: only
one species can survive and the others die out after a suffi-
ciently long time, while the corresponding deterministic
model predicts the coexistence of the species, with regular
oscillations. Stochasticity may also influence the outcome of
the evolutionary dynamics. In small populations, the evolu-
tionary branching is delayed compared to the case of larger
populations, and the delay strongly depends on the absolute
population size �14�. Several empirical data sets are also

compared with theoretical models and are described better
by models with stochastic population dynamics �2,4�. Thus,
population fluctuations, which inevitably exist in any finite
system, may drastically alter the predictions of deterministic
models and often cause decreases in biodiversity. A major
goal of this paper is to investigate the effects of demographic
stochasticity in models of biological community assembly on
evolutionary time scales.

Several models to bridge ecological and evolutionary time
scales have been suggested, such as the tangled-nature model
�15–17�, simplified versions of that model �18–22�, the We-
bworld model �23–26�, the scale-invariant model �27�, and
others �28,29�. More concretely speaking, these are popula-
tion dynamics models with additional rules for the introduc-
tion and extinction of species. New species, whose interac-
tion coefficients are assigned by a rule, are added to the
community at a certain rate; and the extinction of resident
species can happen due to the population dynamics. Evolu-
tion is modeled by repeating the introductions and the extinc-
tions of species in these models. Potential numbers of spe-
cies are much larger than the number of species coexisting at
the same time. If the population dynamics have a noise term,
the emergent communities can be nontrivially different from
the communities selected without this noise. This is because
the speciation events that trigger large changes at the popu-
lation level invariably involve single or very small numbers
of individuals that are highly susceptible to statistical fluc-
tuations �14�. The main issues we address here are the noise
effects on �i� the properties of the emergent communities and
�ii� the statistics of the evolution dynamics, especially the
intermittency during evolution.

In this paper, we use the simplified versions of the
tangled-nature models and study the effects of demographic
stochasticity. For these models, the fixed point and the linear
stability around it for a given community are analytically
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obtainable. This helps us estimate the relevance of the noise
in the population dynamics. Furthermore, long-term dynam-
ics on evolutionary time scales are studied extensively, and
1 / f fluctuations and power-law duration distributions are
found for these models. We show that the dynamics observed
for the individual-based models may undergo qualitative
changes from the corresponding models with deterministic
population dynamics.

The organization of this paper is as follows. In Sec. II, the
models are defined, and some topics related to these models
are discussed. Results of the simulations are shown in Sec.
III. In Sec. III A, we show how population fluctuations affect
the diversity, and in Sec. III B, we explore the dynamics on
evolutionary time scales. Section IV is devoted to a summary
and discussion. Some mathematical details are discussed in
Appendices A–E.

II. MODELS

The models considered here are extensions of the tangled-
nature model studied in �18–20�. The tangled-nature model
is an individual-based model, originally introduced by Hall
and co-workers �17� and later simplified by Rikvold and Zia
�20�. In the simplified models �18–22,30�, the population
evolves stochastically in discrete, non-overlapping genera-
tions. In these models, each individual of species I gives rise
to F offspring with a reproduction probability PI before it
dies. Otherwise it dies without offspring. The reproduction
probability PI for an individual of species I in generation t
depends on the individual’s ability to utilize the amount R of
available external resources, and on its interactions with the
population sizes nJ�t� of all the species present in the com-
munity at that time. The form of PI is discussed in the fol-
lowing subsection.

In the individual-based models, species populations
evolve stochastically. The probability pI�k� that k out of n
individuals of species I succeed in producing offspring is
given by the binomial distribution,

pI�k� = �n

k
�PI

k�1 − PI�n−k, �1�

where � n
k � is the binomial coefficient and PI is the probability

that an individual of species I gives rise to offspring in that
generation. Thus, the mean and variance of the number of
offspring are nPI and nPI�1− PI�, respectively. In this paper,
we consider an approximation to the binomial distribution by
the Gaussian distribution with mean nPI and variance
nPI�1− PI� in order to control the strength of the stochastic-
ity. The following stochastic difference equation is used for
the population updates:

nI�t + 1� = F�PInI�t� + ��nI�t�PI�1 − PI���t�� , �2�

where � and ��t� are a control parameter for the noise
strength and a Gaussian random number with mean 0 and
variance 1, respectively. When �=1, this update algorithm is
a good approximation for the corresponding individual-based
model, while it is deterministic when �=0. Although there is
no easy interpretation except for �=0 and 1, we use several

intermediate values of � in order to investigate the crossover
between deterministic and individual-based models. The
population size nI�t� is a positive real number while it is a
positive integer in the original individual-based models. The
approximation by the Gaussian distribution to the binomial
one is known to be quite good when nI is sufficiently large.
Typically when nPI and n�1− PI� are greater than five, the
approximation is good. Even when nI is small, we expect that
the approximate model still captures the essence of the popu-
lation fluctuations in the individual-based model although the
population dynamics for species with very small populations
are critical for the emergence or extinction of species. Since
it is not necessary to draw random numbers for every indi-
vidual, this update rule is computationally more efficient
than the true individual-based model and enables us to run
simulations for longer times.

It is straightforward to extend the model so that the num-
ber F of offspring per individual follows a stochastic pro-
cess. �See Appendix A.� In that case, the fluctuations are
even more enhanced and the difference from the determinis-
tic models are more important. In this paper, however, we
limit ourselves to the case that F is fixed for simplicity. Even
with this model, the differences between stochastic and de-
terministic population dynamics are observed as shown later.

To mimic an evolutionary process, speciation and extinc-
tion of species are introduced. New species are added to the
system by “mutation” of resident species. These rules are
formulated in Sec. II B. Extinction of a species happens
when its population becomes less than a threshold value,
nthr=0.5. When the Ith species goes extinct, this species is
eliminated from the system, i.e., the number of degrees of
freedom decreases by one. The community configuration re-
organizes as a result of the appearance and extinction of
species.

A. Reproduction probability

As in the original models �20�, the reproduction probabil-
ity PI is taken as

PI�R,�nJ�t�	� =
1

1 + exp�− �I�R,�nJ�t�	��
, �3�

where

�I�R,�nJ�t�	� = − bI +
�IR

Ntot�t�
+ 


J

MIJnJ�t�
Ntot�t�

−
Ntot

N0
. �4�

Here bI is the cost of reproduction for species I �always
positive� and �I is the ability of individuals of species I to
utilize the external resource R. The interaction matrix M de-
fines the interactions between species. The total population
size is denoted by Ntot�t�=
JnJ�t�, and N0 is an environmen-
tal carrying capacity that prevents Ntot�t� from diverging to
infinity. The reproduction probability PI�R , �nJ�t�	� is a
monotonically increasing function of �I, ranging over �0,1�.
Thus �I is a measure of the fitness of species I. For a large
positive �I �small birth cost, strong coupling to the external
resource, and more prey than predators�, PI goes to one and
the population of species I increases. In the opposite limit of
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large negative �I �large birth cost, weak or no coupling to the
external resources, and/or more predators than prey�, PI goes
to zero and the population decreases rapidly. The nonlinear
dependence of PI on �I thus limits the growth rate of the
population size even under extremely favorable conditions
for species I.

Two types of reproduction probabilities are considered in
this paper: model A and model B. Model A has no restriction
on the form of the interaction matrix M. Therefore, each
species makes various types of interactions with others, in-
cluding predator-prey, mutualistic, and competitive interac-
tions. In contrast, the interspecies interactions are limited to
predator-prey interactions in model B. This is realized by the
limitation that the off-diagonal part of M must be antisym-
metric �MIJ=−MJI�. Thus, if MIJ�0 and MJI�0, then spe-
cies I is the predator �or parasite� and J the prey �or host�,
and vice versa. Model A has a more general form, while
model B focuses on the energy transport via the foodweb.

Model A was introduced and studied in �20,22�. In this
model, the reproduction cost bI and the external resource R
are zero; thus the first and the second terms of Eq. �4� dis-
appear:

�I��nJ�t�	� = 

J

MIJnJ�t�
Ntot�t�

−
Ntot

N0
. �5�

The total population size is limited by the last term, which
includes the carrying capacity N0. The off-diagonal elements
of the interaction matrix MIJ are randomly drawn from a
uniform distribution over �−1,+1�, while the diagonal ele-
ments are set to zero. For model A, F=4 and N0=2000 are
used in this paper. The value F=4 for model A is chosen
such that the population dynamics for a single species should
relax monotonically to a stable fixed point in order to ensure
that any complex dynamics are due to interspecies interac-
tions �20�. As shown in �20,22,31,32�, communities tend to
evolve toward mutualism in model A.

In model B �19�, the external resource R is introduced. All
the species have positive values of the birth cost bI, which
are randomly drawn from �0,1�, and a certain proportion
�0.05 is used in this paper� of species can feed on the re-
source, i.e., the resource couplings �I are positive for pri-
mary producers or autotrophs, and zero for consumers or
heterotrophs. Here an abiotic resource R is introduced that is
renewed each generation at the same level �here, 2000� and
does not have independent dynamics. The off-diagonal part
of the interaction matrix is limited to be antisymmetric. Non-
zero elements are assigned randomly to the pairs of
�MIJ ,MJI� with probability c=0.1, which is consistent with
food webs in nature, such as St. Marks Seagrass, St. Martin
Island, and Little Rock Lake �33,34�. The nonzero elements
of the interaction matrix are randomly chosen from a trian-
gular distribution on �−1,+1�. These parameter ranges were
chosen to compare with the corresponding individual-based
model �19�. The diagonal elements of M, which represent the
intraspecies interactions, are selected randomly from a uni-
form distribution on �−1,0� for all the species. The environ-
mental carrying capacity term is not included in this model
�N0=	�. Thus,

�I�R,�nJ�t�	� = − bI +
�IR

Ntot�t�
+ 


J

MIJnJ�t�
Ntot�t�

. �6�

The birth cost term and the negative diagonal elements MII
prevent species populations from growing to infinity. The
fecundity F for model B is set to 2. With this value, the
dynamics for a single species approaches its fixed point
monotonically.

These models have fixed points �n��, which can be calcu-
lated exactly �18�. Here �n�� is a column vector of the equi-
librium population sizes of all species present in the commu-
nity. Linear stability around this fixed point can also be
estimated. See Appendix B for these solutions.

B. Introduction of new species

Communities are assembled through mutations of resident
species as follows. Each species has a bit-string genome of
length L, thus the total number of potential species is 2L. All
the species-specific values, bI, �I, and MIJ, are predeter-
mined at the beginning of the simulation and fixed during the
simulation. In every generation, a mutation happens to the
genomes of the existing offspring at the moment: all the bits
existing in the system, which amount to Ntot

ind
L, flip inde-
pendently with a probability � /L, resulting in the appearance
of new species. The genomic mutation rate, �, determines
how frequently individuals mutate. Here, the number of in-
dividuals belonging to species I, nI

ind is calculated by round-
ing off the population size, nI

ind= �nI+0.5�, and the total num-
ber of individuals is Ntot

ind=
InI
ind. Thus, an individual moves

to a neighbor in the L-dimensional hypercubic genome space
by a mutation. The probability of m-bit mutations in a single
individual is small, O��m�, therefore the probability of mul-
tigene mutation is small. The coefficients of species I �bI, �I,
and MIJ� have no correlation with those of its neighbor spe-
cies, which is a less realistic aspect of the model. However,
the model captures the aspect that the number of mutant
species accessible from a given community is limited �35�.
Models to overcome this problem have also been proposed,
and it is confirmed that the phenotypic correlation does not
qualitatively alter the long-term fluctuations �21�.

Each simulation run was started with a single randomly
chosen species �producer species for model B� with a popu-
lation size of 100 individuals. The details of this initial con-
dition are totally insignificant, and the systems were com-
pletely “thermalized” during the initial warm-up periods.

We also note that the results shown below do not show
qualitative dependence on the precise values of L and � for
reasonable ranges. If the mutation rate is too high, the system
shows mutational meltdown and the number of species di-
verges. For too short L �typically L�10�, the system is
trapped in a certain state and the species composition never
changes. We choose parameters so that these unrealistic
cases are excluded and simulations are computationally fea-
sible.

III. RESULTS

In this section, we focus on the effects of the demographic
noise on the community structure.
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A. Robustness against the noise

1. Model A

First we show how the population fluctuations affect the
growth of the community diversity. Figure 1 shows the time
evolution of the diversity index D and the total population
size Ntot for model A with �=1 and 0, respectively. Here, the
diversity index is defined as D=exp�S�, where

S��nI�t�	� = − 

�I��I�t��0	

�I�t�ln �I�t� , �7�

with �I�t�=nI�t� /Ntot�t�, is the information-theoretical en-
tropy of the species distribution. The quantity D is known as
the exponential Shannon-Wiener diversity index �36�. This
measure can be interpreted as an effective number of species,
and so it has the same units �species� as the species richness.
We adopt this measure in order to filter out unsuccessful
mutants which have tiny populations and rapidly go extinct.
It has been confirmed that D is approximately proportional to
the number of species constituting “core communities,” com-
posed of species who succeeded to have a positive stable
fixed-population �19�. Here we do not use a finite-size cor-
rection �37� for the estimation of S for simplicity. This cor-
rection is numerically confirmed to be less than one percent
and therefore we here adopt the simpler form �Eq. �7��.

The mutation rate �=0.001 and the genome length L
=13 are used for model A. The difference of the average D
and Ntot between �=0 and 1 is slight. Both figures show
similar intermittent behaviors, consisting of active and quiet
periods. During the active periods, the diversity measure and
the total population size show larger fluctuations, and the
species composition changes quickly. On the other hand, dur-
ing the quiet periods, the species composition remains nearly
constant, and the system is considered to be in a quasisteady
state �QSS�. The evolution proceeds intermittently, rather
than gradually, like a stick-slip motion, repeating active and
quiet periods. Average diversity and total population size for
model A are summarized in Table I. Both measures decrease
moderately with increasing noise level.

2. Model B

On the other hand, for model B, the dependence on � is
remarkable. Figure 2 shows typical time series of the diver-
sity index and the total population size for model B at several
noise levels with �=0.0005 and L=18. The data are plotted
every 8192 generations for improved visibility. As the noise
level � increases, both the diversity and the total population
size decrease remarkably. For other � and L, strong depen-
dence on the noise is also observed for model B. Thus,
model A and model B show fundamental differences. This
means that it gets more difficult for species to survive due to
the stochastic population fluctuations. Although the species
populations basically fluctuate around their fixed points, the
probability that a population size touches the extinction
threshold increases under strong stochastic population fluc-
tuations. When � is small, high diversity and high total popu-
lation size are realized. Especially, when �=0, the system
does not reach a statistically stationary state even after 80

106 generations. In addition, the fluctuations are less inter-
mittent than for �=1. This intermittency will be quantita-
tively estimated in the next subsection. We also note that the
diversity for �=1 is approximately the same as that of the
individual-based model �19�, indicating that the current
model with �=1 is a good approximation to the individual-
based one. The averages of the diversity and total population
size for several values of � are summarized in Table II.

To estimate the relevance of the noise effects for model B,
the species abundance distributions �SADs� were investi-
gated. The SAD is the distribution of the populations of each
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FIG. 1. �Color online� Typical time series of the exponential
Shannon-Wiener diversity and the total population size plotted ev-
ery 8000 generations for model A with �=0.001, L=13, and �a�
�=1 and �b� �=0. The upper and lower curves in the figures show
total population size and diversity, respectively.

TABLE I. Numerical results for model A. The data are averaged
over twelve independent runs. The initial 224 generations are con-
sidered as a “warm-up” period and not included in the statistics.
The statistical errors are shown in parentheses. In this paper, the
statistical error of the value x is calculated as
��
�x− x��2� / �n�n−1��, where n is the number of independent
runs.

� D̄ �species� Ntot �individuals�

1 3.55�3� 3155�11�
0.1 4.81�11� 3246�23�
0 4.55�9� 3337�36�
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species with binning on log2 scale, which is widely used in
ecology. Figure 3�a� shows the SAD for model B with �=0
and 1. Since the system without demographic stochasticity
does not reach a stationary state, we divided the time series
for �=0 into three regions; r1, r2, and r3 are the regions
where t�16, 16� t�64, and t�64 million generations, re-
spectively, in order to see how the distribution changes dur-
ing the evolutionary process. For �=1, the data are calcu-
lated for t�16 million generations, where a statistically
stationary state is realized. During the simulation, there are
many species with small populations, which correspond to
unsuccessful mutants. We filtered out unsuccessful mutants
and obtained the “core fixed-point communities” by updating
the population dynamics without the noise and mutations
until all the fixed-point populations analytically calculated
from the interaction matrix �Eq. �B1�� became larger than the

extinction threshold. The SADs were calculated for these
fixed-point communities.

The SADs for these communities are quite similar, while
the peak position shows dependence on �. The SAD for �
=1 has a peak at higher population size than for �=0. The
number of species with small populations are suppressed by
the noise, and a small number of large-population species
survive, which is a natural consequence of the law of large
numbers. The difference in height corresponds to the differ-
ence in diversity between �=0 and 1. The profile is well
fitted by a function suggested by Pigollotti et al. �38�
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FIG. 2. �Color online� Time series of �a� exponential Shannon-
Wiener diversity and �b� total population size for model B with �
=0.0005 at several noise levels. The data are plotted every 8192
generations. In either figure, the curves correspond to �=0, 0.1, 0.5,
and 1.0 from top to bottom, respectively.

TABLE II. Numerical results for model B. The data are aver-
aged over six independent runs. The initial 224 generations are con-
sidered as a “warm-up” period and not included in the statistics.
The statistical errors are shown in parentheses. Uncertainties of Ntot

are also in units of 100 individuals.

� D̄ �species� Ntot �100 individuals�

1 12.2�6� 127�8�
0.5 24.7�4� 164�4�
0.1 101�2� 278�5�
0 315�6�
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FIG. 3. �Color online� �a� Species abundance distribution
�SAD�, �b� pdfs of the eigenvalues of the linear stability matrix, S,
�c� frequency of the eigenvalues of the covariance matrix, G, for
model B with �=1 and �=0. The data are normalized in the same
way as the SADs. For �=0, the data are obtained for three time
intervals. The SADs show the number of species whose populations
are within each bin region, for each community. The data were
sampled every 1
106 generations and averaged over 18 indepen-
dent runs. The fitting functions Eq. �8� are shown in �a� as guides to
the eye. The fitting parameters are �=2.14 and �=0.0245 for �
=0, and �=3.4 and �=0.0054 for �=1. Analogous data for model
A are shown in Fig. 12 �Appendix D�.
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p�n� �
e−�n

n1−� , �8�

where � and � are fitting parameters. This function interpo-
lates between the well-known Fisher’s log-series and the log-
normal distributions. The agreement of the fitting function
for �=0 is reasonable although there is some difference at
n�1. For �=1, the fitting is reasonable only around the
peak. The data have fatter tails than the function of Eq. �8�.

Since the noise term for the fixed-point community is of
order ��n /2, the noise term is of the same order as n� if
n��1. Simply comparing with the SADs, which peak at
�102; the noises are less than the corresponding population
sizes for most of the species. However, if the system has
weak linear stability, the noise may have relevant effects and
cause extinctions of species. The eigenvalues of the linear
stability matrix �see Eq. �B5�� S, are therefore estimated,
and their probability density functions are shown in Fig.
3�b�. The distributions for model B show peaks slightly be-
low 1, which means the system is asymptotically stable, but
the linear stability is weak. The distributions show depen-
dence on �, and the systems with �=0 are less stable than
those with �=1. Thus, more stable communities are selected
under the stochastic noise.

We estimated how large the population fluctuations would
be if the noise corresponding to �=1 were applied to the
fixed-point communities. Following the discussion in �22�,
we assume the probability that the system is found with a
specific number of individuals �n� at a stationary state,
P���n��, takes the Gaussian form

P���n�� = �2��−N/2�det G�−1/2exp�− 1
2 �n�G−1��n�� , �9�

where N is the number of resident species, G is the covari-
ance matrix to be estimated, and ��n�= �n�− �n�� is the differ-
ence from the fixed point. This approximation is valid only
when the population fluctuations are small enough to neglect
the nonlinearity of the population dynamics. Although this
assumption is not satisfied for model B, this discussion tells
us that the population fluctuations could be of the same order
as the population sizes and might cause extinctions. How the
covariance matrix G is calculated is shown in Appendix C.
Here we only show the distribution of the square root of the
eigenvalues of G, which correspond to the size of the popu-
lation fluctuations. The distribution is shown in Fig. 3�c� in
the same format as the SADs �binning in log2 scale�. Com-
paring this figure with the SADs, the population fluctuations
for �=0 would be of the same order as the population sizes.
Thus, the noise drives the species with little stability to ex-
tinction, and, as a result, cause the large decline in diversity.
The same linear stability analysis was also done for model A
�shown in Appendix D�. Model A shows stronger linear sta-
bility and smaller eigenvalues of the covariance matrix G.
Hence model A is robust against the noise and does not show
notable dependence on the stochastic noise.

The next question is how the communities obtained for
model B become sensitive to the noise. The distribution of
the birth cost bI, the resource-coupling coefficient �I, and the
interspecies interaction coefficient MIJ are shown in Fig. 4.
The distributions of bI and MIJ show dependence on �, while

those of �I do not show notable � dependence. In the com-
munities which have evolved via population dynamics with-
out demographic stochasticity, species with quite low bI are
selected, while the selection on MIJ is weak. The ratio of low
bI species increases as the evolution proceeds. On the other
hand, under the noise, the distribution of bI is not as extreme
as for �=0, but the ratio of species with large MIJ becomes
larger. Hence, the selection pressure is applied on the birth
cost for �=0, while it is applied on the interspecies couplings
for �=1.

We also modified model B so that all the species have the
same birth cost, bI�=0.1�. The results are shown in Appendix
E. For this modified model, qualitatively similar results as
for the original model B are obtained: large decline in diver-
sity, more strongly coupled communities, and stronger linear
stability around the fixed points are observed under the
noise.

B. Long-term fluctuations

Not only the mean value of the diversity but also its fluc-
tuations during the evolution are affected by the demo-
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FIG. 4. �Color online� Probability density function of �a� birth
cost, bI, �b� coupling constant to resource, �I, and �c� interaction
matrix elements, �MIJ�, for fixed-point communities of model B.
The data are obtained for �=1 and �=0.
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graphic population fluctuations. The power spectral densities
�PSDs� of the time series of diversity and total population
size, as well as probability densities of species lifetimes and
QSS durations, were calculated in order to evaluate the in-
termittency quantitatively. These results are of particular in-
terest in connection with the dynamics of mass extinctions
on geological time scales �39�.

Power laws are estimated by fitting to log2-binned densi-
ties. However, exponents obtained using the estimators from
�40� are not qualitatively different.

1. Model A

We performed simulations of 225=33 554 432 generations
with 222=4 194 304 generations as a “warm-up” period. This
warm-up period is long enough to realize statistically station-
ary states. For each model and parameter, six independent
runs were performed. Figure 5 shows the PSDs for several
noise levels �.

For model A, both diversity and total population size gen-
erally show approximate 1 / f fluctuations for all values of the
noise level �. The PSDs for weak population fluctuations
show approximate 1 / f power-law behavior over more than
five decades. Thus the 1 / f fluctuations found in the
individual-based model A �20� are robustly reproduced even
with deterministic population updates. Under very strong
population fluctuations, the possibility of extinctions caused
by the population fluctuations is not negligible, and few
communities are able to persist over very many generations.
As a result, the PSDs for high � are not 1 / f like at very low

frequencies. This effect of population fluctuations is also ob-
served in the QSS duration distributions and the species life-
time distributions as seen in Figs. 6�b� and 7.

Figure 6�a� shows the logarithmic derivative of the time
series of the diversity �i.e., dS /dt�, which is averaged over 16
generations. Each curve has a sharp peak around the center
and relatively wide wings in both tails. The sharp peak
around zero represents that the community is in a quiet pe-
riod. The small diversity fluctuations arise from the popula-
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FIG. 5. �Color online� PSDs of �a� exponential Shannon-Wiener
diversities and �b� total population sizes for model A with �
=0.001 at several noise levels. In both figures, lines corresponding
to 1 / f are shown as guides to the eye. Data are averaged over six
independent runs, and their statistical errors are also shown.
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FIG. 6. �Color online� �a� The probability density functions of
the logarithmic derivative of the diversity, dS�t� /dt, for model A
with �=0.001 at several noise levels. The data were averaged over
16 generations in each run and then averaged over six independent
runs. �b� Log-log plot of the probability density functions of the
duration of QSSs. The QSSs are estimated as the periods between
times when �dS�t� /dt� exceeds a cutoff �here, 0.02�. The logarithmic
derivative, dS�t� /dt, was averaged over 16 generations as in �a�.
The line corresponding to a t−2 power law is shown as a guide to the
eye.
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FIG. 7. �Color online� Species-lifetime distributions plotted on
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levels. The line corresponding to t−2 is shown as a guide to the eye.
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tion fluctuations of coexisting species and the repetitive
emergence and extinction of unsuccessful mutants. On the
other hand, the large wings represent large rearrangements of
the species composition. By measuring dS /dt, we can judge
whether the system is in a quiet period where the species
composition remains approximately constant or in an active
period where the dominant species are replaced rapidly. This
type of profile is similar to that of the corresponding
individual-based model A �18,20�.

The duration distributions for QSSs are shown in Fig.
6�b�. The QSSs are estimated as the periods between times
when �dS /dt� exceeds a cutoff �here, 0.02�. The distributions
show approximate 1 / t2 power laws, reproducing the result
for the corresponding individual-based model.

Figure 7 shows the species-lifetime distributions at sev-
eral noise levels. The distribution is fitted by a power law
over more than six decades, and the exponent of the ob-
served distribution is about 2.2, which is in reasonable agree-
ment with the individual-based model A �20�. The distribu-
tion does not show important dependence on the population
fluctuations.

2. Model B

Next we show the results for model B. We performed six
independent runs of 226=67 108 864 generations with 224

=16 777 216 generations as a warm-up period. The mutation
rate �=0.0005 and the genome length L=18 were used.

Although the species populations basically fluctuate
around their fixed-point values, the probability that a species
population touches the extinction threshold increases under
strong stochastic population fluctuations. Therefore, both di-
versity and total population size tend to decrease as � in-
creases. We also note that the diversity for �=1 is approxi-
mately the same as that of the individual-based model B
�19�, indicating that the current model with �=1 is a good
approximation to the individual-based one. The fluctuations
of the diversity for smaller � are also larger than for larger �.
These fluctuations for small � come from introductions of
mutants and extinctions of species. When � is small �e.g.,
�=0.1 or 0�, the system shows high diversity and large popu-
lation size, which are still growing even after 80
106 gen-
erations. In addition, the fluctuations are less intermittent
than for �=1. This intermittency will be quantitatively esti-
mated below.

Figure 8 shows PSDs of the diversities and the total popu-
lation sizes at several noise levels. The PSDs of both diver-
sity and total population size show power laws. The expo-
nent depends on �. When � is large, the PSDs show
approximate 1 / f� behavior with �=1.3�1.4. This exponent
� is in reasonable agreement with the individual-based
model B �19� although it is slightly larger. As � decreases,
the exponent gets closer to 2; indicating that the diversity
and the total population size both fluctuate like random
walks. Thus the population fluctuations change not only the
average value of the diversity but also its fluctuations on
evolutionary time scales. In the individual-based model, the
evolution proceeds intermittently, repeating quiet periods
punctuated by brief active periods. However, in the deter-
ministic model, the evolution proceeds rather gradually, and

the community composition changes continuously.
Since the stationary state is not realized on the time scale

we observed for �=0, we also calculated the PSDs of a cor-
rected time series. First we calculated least-squares fits for
the time series, and then calculated PSDs of the difference of
the time series from the linear fit. The result �not shown�
does not show notable differences from Fig. 8.

Figure 9�a� shows the probability density function of the
logarithmic diversity derivative, dS /dt. Since the averaged
diversity for smaller � is much higher than for larger �, the
distribution for smaller � is quite sharp. This is due to the
high diversity realized for weak noises. To eliminate this
effect, the derivatives normalized by the average diversities
are shown in Fig. 9�b�. We calculated �S�t+16�−S�t�� /16


 D̄ for every 16 generations, where D̄ is the average diver-
sity. Therefore the x axis of Fig. 9�b� has the dimension of
�diversity��time�−1. The sharpness of this normalized data are
almost similar, therefore the absolute diversity fluctuations
are only weakly � dependent.

The distribution for �=1 has a Gaussian center and large
wings and looks similar to the individual-based model B
�19�. However, the distributions for smaller � look different.
When �=0.1, the distribution is quite well fitted by a Gauss-
ian distribution without wings �22�.

The distributions of QSS durations are calculated and
shown in Fig. 10 for �=1 and 0.5. The QSSs are estimated in
the same way as the previous model, but different thresholds
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FIG. 8. �Color online� PSDs of �a� exponential Shannon-Wiener
diversities and �b� total population sizes for model B with �
=0.0005 at several noise levels. The data are averaged over six
independent runs and their �small� statistical errors are also shown.
The straight lines in each figure represent 1 / f� power laws with
exponents �=1 and 2 as guides to the eye. The shoulder in the
population-size PSD at high frequencies is due to self-excited popu-
lation oscillations.
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are used for each � because the profiles show large depen-

dence on �. The threshold for estimating QSS is 0.1 / D̄,

where D̄ is the average diversity. The distributions show ap-
proximate 1 / t power laws regardless of the noise level. This
is consistent with the original individual-based model B �19�
in which a t−1 power law is observed in the QSS duration
distribution �18,19�. For �=0.1 and 0, it is impossible to
estimate QSS durations since the distribution of logarithmic
derivatives of the diversity for these parameters does not
have large wings. If we estimate the QSS with a threshold

which corresponds to the Gaussian region, clear exponential
decay is observed. Hence the small fluctuations occur ran-
domly and do not have remarkable long-time correlations.

Species-lifetime distributions for several � are shown in
Fig. 11. The distributions show a reasonable fit to a t−2 power
law for every �. The average species lifetime for larger � is
slightly less than for smaller �, but the dependence on the
noise strength is slight. Hence the lifetime distribution is not
notably affected at the species level even for small �, while it
is affected at the community level for ��0.1.

IV. SUMMARY AND DISCUSSION

The effects of demographic stochasticity are explored for
two types of biological macroevolution models. The demo-
graphic stochasticity is modeled by the noise term of the
population dynamics. For the mutualistic communities ob-
tained by model A, the noise does not have an important
effect, and the deterministic description does not alter the
picture obtained for the corresponding individual-based
model. On the other hand, the predator-prey model �model
B� shows a remarkable decline in diversity at higher noise
levels. This is because the deterministic population dynamics
allow species to coexist with low linear stability, which are
pushed into extinction in the stochastic population dynamics.
Without the noise, the distribution of the birth cost bI has a
sharp peak close to zero, while the distribution of the cou-
pling constants MIJ is almost the same as the original distri-
bution. With moderate noise, the selection pressure for small
bI becomes less extreme, and species with larger MIJ are
selected. Hence, strongly coupled communities are selected
under the noise, while species with low birth costs are se-
lected at low noise levels.

For model B, species must have a strong coupling to the
external resource or strongly predatory interaction coeffi-
cients compared to the birth cost to sustain their populations.
�See Eq. �6�.� Our result that communities with larger MIJ
are selected under the noise looks contradictory to the clas-
sical consensus on the relation between stability and com-
plexity: a community tends to be less stable when the inter-
actions are dense and strong �41–46�. This apparent
contradiction is due to the antisymmetric correlation of the
linear stability matrix. The off-diagonal parts of the linear
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FIG. 9. �Color online� �a� Probability density functions of the
logarithmic derivative of the diversity �S�t+16�−S�t�� /16 for model
B with �=0.0005 at several noise levels. �b� Probability density

functions of ��S�t+16�−S�t�� /16	
 D̄, where D̄ is the average di-
versity. The data are averaged over six independent runs and their
statistical errors are also shown.

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

101 102 103 104 105 106 107 108

P
ro
ba
bi
lit
y
de
ns
ity
fu
nc
tio
n

QSS duration (generations)

κ = 1.0
0.5
1/t

FIG. 10. �Color online� Probability density functions of QSS
duration for model B with several values of �. The QSSs are esti-

mated as the periods between times when �dS�t� /dt�
 D̄ exceeds a
cutoff �here, 0.1�. The line corresponding to 1 / t is shown as a guide
to the eye.

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

100 101 102 103 104 105 106 107 108 109

P
ro
ba
bi
lit
y
de
ns
ity
fu
nc
tio
n

Species lifetime (generations)

κ = 1.0
0.5
0.1
0

1/t2

FIG. 11. �Color online� Species-lifetime distributions plotted on
log-log scale for model B with �=0.0005 at several noise levels.
The line corresponding to t−2 is shown as a guide to the eye.
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stability matrix in model B is closer to an antisymmetric
form. The ratio

�IJ

�JI
=

nI
��MIJ − bI�

nJ
��MJI − bJ�

�10�

often becomes negative since the interaction matrix M is
antisymmetric. Eigenvalues originating from antisymmetric
off-diagonal matrix elements are all pure imaginary, there-
fore the large MIJ do not destabilize the system significantly.
Actually, the distribution of the diagonal parts �II is similar
to the distribution of eigenvalues, which implies that contri-
butions of the off-diagonal parts are not critical. Moreover, if
the average predation rate is large compared to the birth cost,
species tend to have larger equilibrium populations. That
makes the species have higher resistance against the demo-
graphic noise. Thus, large MIJ often leads to larger equilib-
rium populations without sacrificing the linear stability. We
speculate that such selection of stronger coupling interac-
tions occurs in a wide class of predator-prey population dy-
namics models under demographic noise.

The dynamics on evolutionary time scales for model B is
also altered by the noise. When an appropriate amount of
noise is applied, the system shows approximate 1 / f fluctua-
tions in the evolutionary dynamics. The time series consist of
long quiet periods, during which the species compositions
are steady, and short active periods, in which rearrangements
of species compositions occur with relatively large-scale ex-
tinctions. The duration distribution for the quiet periods is an
approximate power law, and 1 / f fluctuations are found for
the diversity index and the total population size. However, in
the limit of no demographic stochasticity, this intermittent
dynamics is replaced by a more gradual one, and the time
series of the diversity index and the population size become
Ornstein-Uhlenbeck processes. As the noise increases, the
1 / f2 PSDs gradually change toward 1 / f fluctuations. We
speculate that this is due to the smallness of the mutant’s
population and the weak linear stability. Since mutants are
quite prone to go extinct under the demographic noise, QSS
communities are more robust against the invasions of new
species. Similar effect is also reported in another model �14�.

The results shown in this paper indicate that models with-
out noise may be remarkably different from models with
noise. Without demographic noise, communities with weak
stability that would be destroyed under the noise can emerge.
Since the noise effect can be more important than suggested
by a naive 1 /�N prediction, the relevance of demographic
stochasticity is not limited to small-scale communities, such
as isolated islands, lakes, and experimental situations in mi-
crobiology, but can also exist for larger-scale ecosystems.
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APPENDIX A: STOCHASTICITY IN THE NUMBER
OF OFFSPRINGS

It is straightforward to extend the model so that the num-
ber F of offspring per individual becomes random. Suppose
the probability density function �pdf� of F, q�F�, is approxi-
mated by a Gaussian distribution with mean �F and variance
�F

2 . The pdf of the number of individuals in the next genera-
tion, born to parents of species I, pI�n�� for n��nthr is then
given by

pI�n�� = �
nthr

	

N�nIPI,nIPI�1 − PI���x� 
 N�x�F,x�F
2��n��dx ,

�A1�

where N�� ,�2��x� is a Gaussian distribution with mean �
and variance �2. Thus, the fluctuations in population dynam-
ics are more enhanced when F fluctuates. The limit �F→0
corresponds to the model considered in the body of this pa-
per.

APPENDIX B: CALCULATION OF THE FIXED POINT
AND THE LINEAR STABILITY

We briefly show this solution for the sake of completeness
and readers’ convenience although it is shown in detail in
�18,19�. At the fixed point, the condition �P�R , �n�	��=1 /F is
satisfied, where �P� is the column vector of the reproduction
probabilities. Taking the logarithm of this equation gives rise
to N linear equations, where N is the number of populated
species. The solution for �n�� is

�n�� = − M̂−1����R − �b̃�Ntot
� − �1��Ntot

� �2/N0� , �B1�

where M̂−1, ���, �b̃�, �1� are the inverse of the submatrix of M
corresponding to the present species, and the column vectors
of �I, bI−ln�F−1�, and ones, respectively. To find each nI

�,
we must first obtain Ntot

� �=
nI
�� as follows:

Ntot
� = ��N0

2
+���N0

2
�2

+ REN0 �N0 � 	�

− RE/� �N0 = 	� ,
� �B2�

where E and � are defined as

E =
1�M̂−1���

1�M̂−1�1�
�B3�

and

� =
1 − 1�M̂−1�b̃�

1�M̂−1�1�
, �B4�

respectively. The coefficients E and � can be considered as
an effective coupling to the external resource and an effec-
tive interaction strength, respectively. To find each nI

� sepa-

MURASE et al. PHYSICAL REVIEW E 81, 041908 �2010�

041908-10



rately, we now only need to insert this solution for Ntot
� in Eq.

�B1�.
Linear stability around fixed points can also be estimated

analytically. The elements of the linear stability matrix S are

SIJ =
��nI�t + 1��

�nJ�t�
= �IJ + �IJ, �B5�

where �IJ is the Kronecker delta and

�IJ = �1 −
1

F
� nI

�

Ntot
�
�MIJ −

R�I + 

K

MIKnK
�

Ntot
� −

Ntot
�

N0

�
�B6�

is the community matrix. The system is stable against per-
turbations when all the eigenvalues of S are less than unity in
magnitude.

APPENDIX C: CALCULATION OF THE COVARIANCE
MATRIX G

For the calculation of the covariance matrix G, we need
not only the stability matrix S but also the noise matrix H,
which is defined as the covariance matrix of the noise term
of the population dynamics. Since the noise for each species
is independent, H is a diagonal matrix and is written as

HIJ = �IJF
2�2nI

�PI��nI
����1 − PI��nI

���� �C1�

=�IJ�
2nI

��F − 1� , �C2�

where �IJ is a Kronecker delta and the relation FPI��nI
���=1

is used to derive the second equation. The relation between
G, S, and H is

G − SGST = H , �C3�

where the superscript T denotes the transpose of the matrix.
Although G is not simply expressed by the known matrices S
and H, it is written in a series as
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FIG. 12. �Color online� �a� Species abundance distribution
�SAD�, �b� probability distribution functions �pdf� of the eigenval-
ues of the linear stability matrix, S, �c� pdf of the eigenvalues of
the covariance matrix, G, for model A with several �. The data are
sampled every 1
106 generations. The SADs show the number of
species whose populations are within each bin region, for each
community. The fitting function for the SAD ��=1� is Eq. �8� with
�=4.5 and �=0.006. Compare with Fig. 3 for model B.
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FIG. 13. �Color online� Time series of �a� exponential Shannon-
Wiener diversity and �b� total population size for the modified
model B with �=0.001 and L=20 at �=0 and 1. The data are
plotted every 16384 generations. Compare to Fig. 2.
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G = H + SHST + SSHSTST + ¯ . �C4�

Hence, G is calculated by the following iterations:

Gk = H + SGk−1ST, �C5�

where G0=H. We repeated this iteration until the absolute
values of all the elements of the matrix �Gk−Gk−1� are less
than 10−3. The number of iterations is typically of order 104.
�It depends on the species composition.� Since the eigenval-
ues of S are close to unity, many iterations are necessary to
obtain an accurate estimate of G.

APPENDIX D: LINEAR STABILITY ANALYSIS
FOR MODEL A

SAD and the linear stability matrix S for model A were
calculated. Figure 12�a� shows the SAD for model A at sev-
eral noise levels. The data are sampled every 1
106 genera-
tions after an initial warm-up period of 4
106 generations.
In the same way as for model B, we first removed unsuccess-
ful mutants and obtained the core fixed-point communities.
The profiles show little dependence on the noise level. We
tried fitting the SADs by Eq. �8�, but the fitting does not look
very reasonable. The eigenvalue distribution of the linear
stability matrix S and the distribution of square roots of the
eigenvalues of the covariance matrix G are shown in Fig.
12�b� and Fig. 12�c�, respectively. Figure 12�b� shows that
the linear stability for model A is much stronger than for
model B. Negative eigenvalues of S correspond to oscillating

modes. The amplitude of fluctuations that would appear un-
der the noise were estimated and shown in Fig. 12�c�. The
typical size of the amplitude is smaller than the typical popu-
lation sizes and, as a consequence, the resident species sel-
dom suffer from the noise effects.

APPENDIX E: TRIAL FOR MODEL B WITH CONSTANT
BIRTH COST

The distribution of the birth cost bI for model B at �=0
has a quite sharp peak close to zero. This emerges as a result
of the selection and causes low linear stability. Since quite
low birth cost is not very realistic, we also tried a model in
which the birth cost is fixed to be 0.1 for all species. Typical
time series of diversity and total population size for �
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FIG. 14. �Color online� PSDs of �a� exponential Shannon-
Wiener diversities and �b� total population sizes for the modified
model B. In both figures, lines corresponding to 1 / f and 1 / f2 are
shown as guides to the eye. Data are averaged over six independent
runs, and their statistical errors are also shown. Compare to Fig. 8.
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FIG. 15. �Color online� �a� Probability density function of �S�t
+16�−S�t�� /16
 D̄, where D̄ is the average diversity, for the modi-
fied model B with �=0 and 1. A Gaussian function is also shown as
a guide to the eye. Compare to Fig. 9�b�. �b� The QSS duration
distribution for �=1. The cutoff to detect QSS is 0.012. Compare to
Fig. 10. �c� Species lifetime distribution for �=0 and 1. A power
law t−2 is also shown as a guide to the eye. Compare to Fig. 11.
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=0.001 and L=20 are shown in Fig. 13. Averages of the
diversity index D for �=0 and 1 are 219 and 19.7, respec-
tively. Thus, there are significant decreases in diversity and
total population size with increasing noise.

Properties of long-term fluctuations are also estimated.
Six independent simulations of 225 generations with 222

warm-up generations were performed. Figure 14 shows the

PSDs of diversity and total population sizes. For �=0 and 1,
approximate 1 / f2 and 1 / f fluctuations are observed, respec-
tively. This dependence on the noise level is similar to the
original model B. In the same way as the original models, the
distribution of the logarithmic derivative of the diversity and
the duration distribution of quiet periods are calculated. Un-
der the noise, the distribution of dS /dt has a Gaussian center
and wider wings �Fig. 15�a��. The duration of quiet periods
distributes broadly although it is not a power-law distribution
�Fig. 15�b��. This is characteristic of the modified model. The
species-lifetime distribution shows approximate 1 / t2 distri-
butions regardless of the noise levels �Fig. 15�c��. The SADs
�Fig. 16�a��, the eigenvalue distributions of S and G �Figs.
16�b� and 16�c��, and the distribution of MIJ �Fig. 17�b��
show the same dependence on � as the original model B. The
distribution of �I has a different dependence on the noise
level than the original model B �Fig. 17�a��. When the noise
is not applied, much stronger evolution pressure is applied to
�I. Although there are several deviations from the results for
the original model B, qualitatively the same behaviors are
observed.
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